LIF is a contraction-induced myokine stimulating human myocyte proliferation.
نویسندگان
چکیده
The cytokine leukemia inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of myoblasts. We hypothesized that LIF is a contraction-induced myokine functioning in an autocrine fashion to activate gene regulation of human muscle satellite cell proliferation. Skeletal muscle LIF expression, regulation, and action were examined in two models: 1) young men performing a bout of heavy resistance exercise of the quadriceps muscle and 2) cultured primary human satellite cells. Resistance exercise induced a ninefold increase in LIF mRNA content in skeletal muscle, but LIF was not detectable in plasma of the subjects. However, electrically stimulated cultured human myotubes produced and secreted LIF, suggesting that LIF is a myokine with local effects. The well established exercise-induced signaling molecules PI3K, Akt, and mTor contributed to the regulation of LIF in cultured human myotubes as chemical inhibition of PI3K and mTor and siRNA knockdown of Akt1 were independently sufficient to downregulate LIF. Human myoblast proliferation was increased by recombinant exogenous LIF and decreased by siRNA knockdown of the endogenous LIF receptor. Finally, the transcription factors JunB and c-Myc, which promote myoblast proliferation, were induced by LIF in cultured human myotubes. Indeed, both JunB and c-Myc were also increased in skeletal muscle following resistance exercise. Our data suggest that LIF is a contraction-induced myokine, potentially acting in an autocrine or paracrine fashion to promote satellite cell proliferation.
منابع مشابه
Differential regulation of macrophage differentiation in response to leukemia inhibitory factor/oncostatin-M/interleukin-6: the effect of enforced expression of the SCL transcription factor.
The physiologic program of macrophage differentiation normally proceeds in a coordinated manner in response to several different growth factors. Although the utilization of common receptor subunits may explain in part overlapping biologic functions, mechanisms by which unique actions are mediated remain obscure. We examined growth factor-induced macrophage differentiation in M1 leukemia cells t...
متن کاملFunctional significance of hemodynamic overload-induced expression of leukemia-inhibitory factor in the adult mammalian heart.
BACKGROUND Leukemia-inhibitory factor (LIF) is a member of the interleukin-6 family of cytokines that utilize gp130 as a common signaling component. In the present study, we examined the mechanisms that govern LIF expression and functional effects in the adult heart. METHODS AND RESULTS LIF mRNA and protein biosynthesis were examined in the adult feline heart after hemodynamic overloading ex ...
متن کاملGlycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction.
BACKGROUND We recently reported that the activation of glycoprotein (gp) 130 by leukemia inhibitory factor (LIF) upregulates Bcl-xL and exerts antiapoptotic effects in cardiac myocytes. In addition, LIF induces activation of phosphatidylinositol (PI) 3-kinase and Akt, which are known to be required for cell survival. However, their regulatory roles in cell death remain unknown. METHODS AND RE...
متن کاملLeukemia inhibitory factor/human interleukin for DA cells: a growth factor that stimulates the in vitro development of multipotential human hematopoietic progenitors.
We investigated the in vitro hematopoietic stimulatory activity of leukemia inhibitory factor/human interleukin for DA cells (LIF/HILDA) on bone marrow progenitor populations in 17 normal individuals. In serum-free cultures LIF/HILDA did not induce colony growth. In serum containing media, LIF/HILDA stimulated the growth of colony forming unit (CFU)-MIX and CFU-EO in a dose-dependent fashion an...
متن کاملCardiotrophin-1 displays early expression in the murine heart tube and promotes cardiac myocyte survival.
We have recently isolated a novel cytokine, cardiotrophin-1 (CT-1), from an in vitro embryonic stem cell system of cardiogenesis that can activate embryonic markers in neonatal rat cardiac myocytes. CT-1 is a new member of the interleukin 6 (IL-6)/leukemia inhibitory factor (LIF) cytokines, which activate downstream signals via gp130-dependent pathways. To define the developmental pattern of ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 111 1 شماره
صفحات -
تاریخ انتشار 2011